
Many-valued logic and sequence arguments in

value theory

Simon Knutsson

June 11, 2021

Published in Synthese. The official version is available for free
at https://doi.org/10.1007/s11229-021-03268-4. This version

was created after all peer-review but before copy editing.

Abstract

Some find it plausible that a sufficiently long duration of torture is
worse than any duration of mild headaches. Similarly, it has been claimed
that a million humans living great lives is better than any number of worm-
like creatures feeling a few seconds of pleasure each. Some have related
bad things to good things along the same lines. For example, one may hold
that a future in which a sufficient number of beings experience a lifetime
of torture is bad, regardless of what else that future contains, while minor
bad things, such as slight unpleasantness, can always be counterbalanced
by enough good things. Among the most common objections to such ideas
are sequence arguments. But sequence arguments are usually formulated
in classical logic. One might therefore wonder if they work if we instead
adopt many-valued logic. I show that, in a common many-valued logical
framework, the answer depends on which versions of transitivity are used
as premises. We get valid sequence arguments if we grant any of several
strong forms of transitivity of ‘is at least as bad as’ and a notion of com-
pleteness. Other, weaker forms of transitivity lead to invalid sequence
arguments. The plausibility of the premises is largely set aside here, but
I tentatively note that almost all of the forms of transitivity that lead
to valid sequence arguments seem intuitively problematic. Still, a few
moderately strong forms of transitivity that might be acceptable lead to
valid sequence arguments, although weaker statements of the initial value
claims avoid these arguments at least to some extent.

1 Introduction

Some find it plausible that there are values that cannot be counterbalanced by
other values; for example, that a sufficiently large amount of torture is worse
than any amount of mild headaches.1 An example concerning positive value

1E.g., Carlson (2000, pp. 246–247). For discussion, see, e.g., Norcross (1997) and Schönherr
(2018).
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is provided by Lemos (1993, p. 487) who finds it better that a million people
live excellent lives than that any number of worm-like creatures each feel a few
seconds of pleasure.2 One can relate bad things to good things along the same
lines. For example, some authors seem sympathetic to the following idea: some
horrible things such as a sufficiently large finite number of humans experiencing a
lifetime of torment cannot be counterbalanced by various good things, regardless
of the amount of those good things, while trivially bad things can always be
counterbalanced by sufficiently many good things.3

These ideas are important for policy-making and the allocation of healthcare
resources (Voorhoeve 2015). For example, should limited public funds be spent
on treating many people with mild illnesses or a few with the worst health
conditions? The ideas are also important for the impossibility theorems in
population ethics (Carlson 2015; Thomas 2018).

I deal with some of the most common objections to such ideas, namely a
group of similar objections called sequence arguments (or spectrum or contin-
uum arguments), which have been much studied.4 I will explain them in detail
later, but the following is a sketch of a sequence argument against the view
that a sufficiently large amount of torture is worse than any amount of mild
headaches: There is a sequence of intermediate bads between torture and mild
headache such as the following: torture, a terrible disease, a less serious dis-
ease, severe headache, moderate headache, mild headache. Spelt-out sequence
arguments include more bads so that adjacent bads are more similar to each
other. If a sufficiently large amount of torture is worse than any amount of mild
headaches, there is a bad in the sequence such that this relation holds between
it and its successor; for example, a sufficiently large amount of severe headaches
is worse than any amount of moderate headaches. It is implausible, the argu-
ment goes, that this holds between adjacent bads in the sequence, which are
so similar. Hence, the plausibility of the original view of torture versus mild
headaches is undermined.

The main sequence arguments are formulated in classical logic, which as-
sumes there are only two truth values, true and false, and that every declara-
tive sentence is either true or false. I investigate whether sequence arguments
are convincing if one instead uses many-valued logics; that is, logics with more
than two truth values. More specifically, I focus on the validity of sequence
arguments that use many-valued logic, and largely leave the plausibility of the
premises for future research.

The truth values in many-valued logic are sometimes called truth degrees,
and I assume, as is common, that they are numbers between 0 and 1, where 0
is falsest and 1 is truest. For example, in some many-valued logics, a sentence

2For more historical references, see Arrhenius (2005, p. 97).
3Such authors include Mayerfeld (1999, pp. 176–180), Brülde (2010, p. 577), Hedenius

(1955, pp. 100–102), and Erik Carlson (e-mail to the author, Oct. 1, 2019).
4Early sequence arguments were formulated by Temkin (1996), Norcross (1997), and

Rachels (1998). More recent work has been done by, e.g., Temkin (2012), Arrhenius and
Rabinowicz (2015), Handfield and Rabinowicz (2018), Nebel (2018), Pummer (2018), and
Jensen (2020).
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can be true to degree 0.85.
It has been suggested that one can reply to sequence arguments by appealing

to vagueness, and that one of the options is a theory of vagueness involving
degrees of truth (Qizilbash 2005) or many-valued logic (Knapp 2007).5 But the
treatments of the topic have been brief, and in contrast to these works, I do not
appeal to vagueness. I focus on the logic, and I leave it open whether vagueness
has any role to play.

There are several reasons why it is worthwhile to investigate many-valued
logic and sequence arguments.6 Broadly speaking, many-valued logic seems at
least as suitable for use in value theory as does two-valued (e.g., classical) logic,
regardless of sequence arguments, but many-valued logic also has particular
strengths when it comes to such arguments. More specifically, many-valued
logic allows for gradual changes in the phenomenon at hand to be mirrored by
gradual changes in degrees of truth.7 For example, if someone who is going
bald loses one more hair, it can become slightly truer that the person is bald.
Similarly, slight changes in evaluatively relevant features can be mirrored by
slight changes in the truth degree of value statements about that phenomenon.
A related advantage of using many-valued logic in value theory is that it allows
for a nuanced, precise repertoire of positions. For example, one can assign a
truth value such as 0.76 to a view in value theory.

There are long-standing questions about how to understand or interpret
degrees of truth, what they mean and what they are (e.g., Gottwald 2001,
p. 4; Bradley 2009, p. 208; Smith 2008, §5.1). And there are many proposed
answers (e.g., Smets and Magrez 1987; Paris 2000; Smith 2008, p. 211; Cintula,
Fermüller, and Noguera 2017, §9). The answers do not affect the main results of
this paper so I leave these questions open, and I do not defend or presuppose any
one answer to these questions. Still, as background, I will now give a glimpse
of how one might and might not understand degrees of truth. Authors such as
Hájek (1998, pp. 2, 4) and Dubois and Prade (2001) distinguish truth degrees
from probabilities (and I follow their lead here). If one assumes that possession
of properties comes in degrees, one can identify degrees of truth with degrees
of property possession. As Smith (2008, p. 211) puts it, “if Bob’s degree of
baldness is 0.3, then ‘Bob is bald’ is 0.3 true.” We would deal with betterness
or worseness rather than baldness, but the story could be similar: the holding
of the relation of worseness between two items can come in degrees. Another
option is to understand the truth degree an agent would give to a sentence as
the ease with which the agent can accept the sentence (Paris 1997).

In §2, I explain the views to which sequence arguments are objections, and
in §3, I describe previous sequence arguments. Then we turn to many-valued

5There is also a literature on many-valued logic and the sorites paradox (Paoli 2019), which
has some resemblance to sequence arguments (Temkin 1996; Pummer 2018, §3; Asgeirsson
2019).

6See Paoli (2003, forthcoming) for defences of many-valued logic, and Smith (2008) for a
defence of degrees of truth. For writings favourable to many-valued logic, see, e.g., Behounek
(2006), Hájek (2007), and Novák and Perfilieva (2011). For objections to many-valued logic,
see Paoli (2003, pp. 367–368) and Smith (2008) and the sources cited there.

7A similar point is made by Paoli (2003, pp. 364–365) in relation to the sorites paradox.
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logic and sequence arguments. In §4, I present different approaches to sequence
arguments using many-valued logic, and I motivate my strategy. I then describe
my logical framework (§5). In §6 and §7, I consider premises in sequence argu-
ments. Finally, §8 contains my formal results about sequence arguments, and
§9 concludes.

2 The views targeted by sequence arguments

The ideas targeted by sequence arguments can and have been specified in differ-
ent ways. My focus is on the view that there are bad things which are inferior
to other bad things, where ‘inferior to’ is defined as follows:

Inferiority: An object b is inferior to another object b′ if and only if there is
a number m such that m b-objects are worse than any number of b′-objects.8

There are different ways to specify what a bad b and m b-objects are, and what
‘worse than’ refers to. I will give a few examples, but the following specifications
do not matter for my results: An object b could be an experience with a given
unpleasantness that lasts for one second, and m b-objects could mean m such
experiences. In general, I think of m b-objects as m objects of the same type
as b. And ‘we might think of objects of the same type as being identical in all
value-relevant respects,’ as Arrhenius and Rabinowicz (2015, p. 232) say. The
term ‘worse,’ could refer to the value of outcomes or something being worse for
an individual.

Although I focus on inferiority between bads, my points in this paper are
equally relevant to the analogous superiority relation between goods,9 and to
the aforementioned views that relate bads to goods along the same lines.

3 Previous sequence arguments in more detail

In general terms, sequence arguments assume a finite sequence of goods g1, . . . , gn
or bads b1, . . . , bn, where n is a positive integer. The bad b1 could, for example,
be torture, and bn could be some minor bad such as mild discomfort. Sequence
arguments typically assume transitivity and sometimes completeness of a rela-
tion such as ‘at least as good as.’10 The classical notion of transitivity of ‘at
least as bad as,’ which I denote 4, is that for all a, b and c, a 4 b and b 4 c
together imply a 4 c. And a standard, classical statement of completeness of 4
is that for all a and b, either a 4 b or b 4 a.

8I draw on the formulation of weak superiority by Arrhenius and Rabinowicz (2015, p. 232).
9I define superiority as follows: A good g is superior to another good g′ if and only if there

is a number m such that m g-objects are better than any number of g′-objects (cf. Arrhenius
and Rabinowicz 2015, p. 232).

10E.g., Norcross (1997), Arrhenius and Rabinowicz (2015), and Handfield and Rabinowicz
(2018).
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An example of a clear sequence argument that assumes classical logic is pro-
vided by Arrhenius and Rabinowicz (2015, p. 241).11 It is perhaps the argument
in the literature that is most similar to the sequence arguments I formulate, and
it goes as follows: If ‘is at least as bad as’ is complete and transitive, and if b1
is inferior to bn, then the sequence contains a bad bi that is inferior to the bad
bi+1 that immediately follows it. If the sequence is chosen such that each item
is only marginally better than the preceding item, it is implausible or counter-
intuitive that bi would be inferior to the only marginally better bi+1. Since this
is a consequence of the assumption that b1 is inferior to bn, the plausibility of
this assumption is undermined.

It is an open question whether it is a problem if there is inferiority or su-
periority between adjacent items in a sequence.12 I set the question aside and
assume that it is desirable to avoid inferiority and superiority between adjacent
items.

I follow the same basic route of granting completeness and transitivity for the
sake of argument, and I will see whether sequence arguments of this kind work if
we assume many-valued logic. Hence, our premises will mainly be many-valued
versions of completeness and transitivity.

There are other types of sequence arguments, but I set them aside. For exam-
ple, arguments without transitivity can be found in Nebel (2018) and Pummer
(2018, §3), and they are quite different from the arguments I focus on. Arrhenius
and Rabinowicz (2015, p. 241) present a sequence argument without assuming
completeness, which has a weaker conclusion than their argument above that
uses completeness. Other examples are the sequence arguments by Handfield
and Rabinowicz (2018), which allow indeterminacy or incommensurability.

4 Approaches to sequence arguments using
many-valued logic

There are many choices to make when working with many-valued logic and
sequence arguments. One choice is which logics to assume. There is a wide
range of many-valued logics with different sets of truth values, notions of logical
consequence, and connectives for ‘and,’ ‘or,’ ‘implies,’ etc. (e.g., Gottwald
2001). Another choice is which premises to use in the sequence arguments.
There are, for instance, several different versions of completeness and transitivity
in many-valued logic that could be used as premises.

In this section, I outline two broad approaches to these choices, and I moti-
vate my strategy. Then, in §5, I describe the logics I choose to use (essentially,

11Their argument is about goods, but I rephrase it so that it is about bads because I focus
on bads. Arrhenius has confirmed in conversation that they had classical logic in mind when
they formulated their argument.

12See, e.g., Carlson (2000), Binmore and Voorhoeve (2003), Rabinowicz (2003), Arrhenius
(2005, p. 108), Arrhenius and Rabinowicz (2005, p. 138, 2015, p. 238), Norcross (2009, pp. 85–
88), and Klocksiem (2016).
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the most common and simplest logics). Thereafter I turn to the versions of
completeness and transitivity to be used as premises.

It is not clear which of the following two approaches is best, and hence I will
use both approaches, one at a time. But I will emphasise the second approach
more due to some of its advantages, which I will mention shortly.

The first approach is to start with one or more specific many-valued logics,
with certain quantifiers and logical connectives. From the quantifiers and con-
nectives in a logic, we can get versions of transitivity and completeness. For
example, in the family L of  Lukasiewicz logics I will work with, we can state
transitivity of the many-valued relation 4 using the quantifier ∀ (for all), the
conjunction ∧ and the implication→ as ∀a∀b∀c((a 4 b∧ b 4 c)→ a 4 c). Then
we can consider sequence arguments with that formula as a premise. An advan-
tage of this approach is that we start with a systematically constructed logic,
where quantifiers and connectives ideally correspond to the natural language
expressions ‘for all,’ ‘and,’ ‘or,’ ‘implies,’ etc. in a reasonable way, and where
connectives may be definable in terms of one another in a standard, intuitive
way (see, e.g., Smith 2012). Regarding this first approach, I will use L in one
technical result.  Lukasiewicz logic is ‘the most intensely researched many-valued
logic,’ according to Hähnle (2001, p. 323).

The second approach is to place conditions such as transitivity and com-
pleteness on many-valued relations such as 4, without first selecting specific
many-valued logics such as those in L. For example, if we let JK denote the truth
value of a statement, a reasonable transitivity condition might be that for all a, b
and c, min(Ja 4 bK, Jb 4 cK) ≤ Ja 4 cK. This is how versions of transitivity and
completeness are often formulated in the literature on infinite-valued (fuzzy)
preference relations (e.g., Dasgupta and Deb 2001). We can treat such transi-
tivity and completeness conditions as meta-level restrictions, and we can reason
in our metalanguage about, for example, what follows from them. An advantage
of this approach is that we can easily work with a wider range of potentially
interesting transitivity and completeness conditions, regardless of whether and
how they could be stated as formulas using the connectives in specific logics
such as those in L. A related advantage of this second approach is that it lends
itself well to drawing general conclusions about many-valued logic and sequence
arguments. A third advantage is that we bracket, at least at the present stage
of inquiry, the big topic of which many-valued versions of connectives, such as
conjunction, are suitable. Instead, we focus on value relations such as 4 and
their formal properties (e.g., the transitivity conditions that may hold for 4).
Since this paper is fundamentally about questions in value theory, the properties
of value relations seem more crucial than the choice of logical connectives.

Along the lines of the second approach, I will state a few basic, common
properties of a many-valued logic, and use the symbol ‘M’ to represent the family
of logics with those properties. I then consider ten versions of transitivity and
several notions of completeness. In the end, I formulate and prove technical
results about sequence arguments for all logics in the family M.13

13I am grateful to a reviewer for suggesting essentially this approach.
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When using the second approach, there are questions about how to for-
mulate, select and assess the plausibility of the transitivity and completeness
conditions that are to be used as premises in the sequence arguments. An idea
in the literature is that one can make intuitive judgements about, for example,
whether a transitivity condition is too restrictive (e.g., Dasgupta and Deb 1996,
p. 307). But perhaps this requires a clearer statement of what it means that
it is true to degree, say, 1

3 that a is worse than b,14 which is a question I leave
open. So, to provide a more complete treatment that does not hinge on picking
out plausible transitivity and completeness conditions based on an account of
the degrees of truth of value statements, I allow, for the sake of argument, that
someone who wants to formulate a sequence argument is free to use a range
of transitivity and completeness conditions. And I present results about the
validity of sequence arguments for this range of options.

5 Our logical framework

I use many-sorted many-valued first-order logics at the object level. At this
level, we have, for example, many-valued predicates such as 4, connectives such
as ∧, and quantifiers such as ∀. I use sorted logics for convenience because we
are dealing with three sorts of things: numbers, which I have represented by m,
bads such as b, and quantities of bads such as m b-objects. At the meta level,
I use classical logic and induction. For example, I use classical logic when I use
proof by contradiction, and when I assume that it is either true to degree 1 that
b is inferior to b′ or it is not true to degree 1 that b is inferior to b′.

Our formal object-level language L is 3-sorted and contains the sorts σZ+ ,
σB and σQ, which, intuitively, are about positive integers, bads, and quantities
of bads, respectively. Each sort will be associated with a domain: σZ+ , σB , and
σQ will be associated with the domains DσZ+

, DσB
, and DσQ

, respectively (I will
sometimes simply call the domains Z+, B, and Q). We can think of DσZ+

as the
set {1, 2, 3, . . .}, DσB

as the set of bads {b1, . . . , bn}, and DσQ
as containing the

element 7 b1-objects, the element 4 b2-objects, and so on for all combinations of
numbers in DσZ+

and bads in DσB
. Each sort has a set of variables: VZ+ = {k,

m, n, k′,m′, n′, . . .}, VB = {b, b′, b′′, . . .} and VQ = {q, q′, q′′, . . .}. Similarly,
the sorts have the sets of individual constants CZ+ , CB and CQ, respectively. L
includes the binary relation symbols ≺, 4 and ∼ of type 〈σQ, σQ〉. The intended
readings of ≺, 4 and ∼ are ‘is worse than,’ ‘is at least as bad as’ and ‘is equally
bad as,’ respectively. Because the relation symbols are of type 〈σQ, σQ〉, the
relations named by them will be relations between elements of the domain DσQ

;
for example (roughly speaking), 7 b1-objects ≺ 4 b2-objects. L also contains the
binary function symbol f of type 〈σQ, σZ+ , σB〉. The symbol f will be associated
with a function that, due to the type of f , takes an element of DσZ+

and an
element of DσB

as inputs and outputs an element of DσQ
. We can think of the

function named by f as simply taking a number and a bad as inputs and giving
us a quantity of a bad such as 7 b1-objects as output.

14Thanks to a reviewer for pressing this point.
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The set of truth values will be either of the following: A finite set of equidis-
tant rational numbers between 0 and 1, always including 0 and 1; that is,

Wp :=

{
i

p− 1
: 0 ≤ i ≤ p− 1

}
for an integer p ≥ 2, where := is definitional equality. For example, W4 ={

0, 13 ,
2
3 , 1
}

. Or the infinite set of all real numbers between 0 and 1, including 0
and 1; that is,

W∞ := [0, 1]

(Gottwald 2017). ‘W’ represents any of Wp or W∞.
I will use the perhaps most basic notion of models and logical consequence

in many-valued logic. A conclusion is a logical consequence of the premises if
and only if (iff) the conclusion is true to degree 1 whenever all premises are
true to degree 1. We can find this notion of consequence in several important
many-valued logics (Gottwald 2001, pp. 180, 249, 267, 291, 313, 386). As usual
in first-order logic, the truth value of a sentence depends on the interpretation
of the language which involves a structure that corresponds to the language
(Conradie and Goranko 2015, ch. 4). More exactly, in many-sorted many-valued
first-order logic, a structure S (containing domains, relations and functions) for
a language J consists of the following:

• for each sort σ in J , a domain Dσ in S;

• for each constant symbol c in J of sort σ, an element cS in Dσ;

• for each predicate symbol P in J of type 〈σ1, . . . , σn〉, a relation PS on
Dσ1
× . . . ×Dσn

(i.e., a mapping PS associating a truth value with each
tuple 〈d1, . . . , dn〉 where di ∈ Dσi for i = 1, . . . , n);

• for each function symbol f in J of type 〈σ0, . . . , σn〉, a function fS :
Dσ1 × . . .×Dσn → Dσ0

(cf. Hájek 1998, §5.5; Manzano 1993; Gottwald 2001, pp. 22, 27; Lucas 2019).15

The truth value of a sentence A in S is denoted JAKS . We say that S is a model
of A and write S � A iff JAKS = 1. For a set of sentences Σ, S is a model of Σ
and we write S � Σ iff JBKS = 1 for each B ∈ Σ. We say that A is a logical
consequence of Σ and write Σ � A iff S � Σ implies S � A for all S. That is,
Σ � A iff every model of Σ is a model of A. Finally, A is logically valid and we
write � A iff S � A for all S (see Gottwald 2001, §3, 249).

I am going to define the universal quantifier ∀ and the existential quantifier
∃ in the seemingly most common way in many-valued logic (e.g., Gottwald

15For the purpose of this paper, we want to avoid the complications that arise when there is
an element in a domain that is not named by any constant symbol in the language. Similarly,
we want to avoid that the symbols and the elements do not match in the sense that, for
example, the constant symbol ‘b2’ names the element b4. To avoid these complications, I
hereafter assume that each element in each domain is named by the corresponding constant
symbol so that, for example, the symbol ‘b2’ names the element b2.
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2001, pp. 26, 28, 250, 308; Urquhart 2001, p. 274; Malinowski 2007, pp. 49,
51; Bergmann 2008, ch. 14; Smith 2008, p. 65). In this way, ∀ and ∃ work
as generalisations of the perhaps most common versions of conjunction and
disjunction (respectively) in many-valued logic (e.g., Smith 2008, pp. 65, 67,
70).16 I define ∀ and ∃ in this standard way with the minor modification that the
variable and domain are of a sort. In the following definitions, xσ is a variable
of sort σ, and H is a well-formed formula with at most one free variable xσ:

J∀xσHKS := inf
{
JH[xσ/d]KS : dS ∈ Dσ

}
;

J∃xσHKS := sup
{
JH[xσ/d]KS : dS ∈ Dσ

}
.{

JH[xσ/d]KS : dS ∈ Dσ

}
is the set of truth values of H gotten when, for every dS

in the domain Dσ, each free occurrence of xσ in H is replaced with the constant
d that names dS . Given a set S, inf {S} is the infimum (greatest lower bound)
of S. For example, let S be a subset of R. If inf{S} exists, it is the largest
r ∈ R such that for all s ∈ S, r ≤ s. Similarly, sup{S} is the supremum (least
upper bound) of S. I will not consider other definitions of the quantifiers in this
paper because that would give us several different notions of inferiority (because
inferiority contains universal and existential quantification) and more versions
of transitivity and completeness (which contain universal quantification). We
will already deal with many different logics and ten versions of transitivity, so we
will have to leave an investigation of sequence arguments with different versions
of the quantifiers for another time.

To save on notation, I will omit S and S when it is clear from the context
what is meant and, for example, write J K instead of J KS . And I will typically
use the same notation for variables, constants, and objects in the domain; for
example, k, m and n for variables of sort σZ+ , constants in CZ+ , and objects in
the domain Z+.

I use the notation ‘M’ for the family of all logics with W, �, ∀ and ∃, as
defined above. ‘Mp’ and ‘M∞’ represent such families of logics with the sets of
truth values Wp and W∞, respectively.

‘L’ denotes the family of  Lukasiewicz logics I deal with. L has any of the
sets of truth values W, and the notions of �, ∀ and ∃ are as in M. So L falls
within M. But L has specific propositional connectives, while it is unspecified
which connectives the logics in M have.

 Lukasiewicz logic is often presented as having available two disjunction con-
nectives ∨ and Y, and two conjunction connectives ∧ and &, (Hájek 1998, pp. 65,
67; Gottwald 2001, pp. 179–181, 2017; Metcalfe, Olivetti, and Gabbay 2009,
p. 146; Marra 2013). The connectives of L are listed in Table 1. I omit some
parentheses when writing formulas. As usual, negation has preference over
disjunction and conjunction, which have preference over implication and bicon-
ditional. For example, I write ((¬A) ∧B)→ (C ∨D) as ¬A ∧B → C ∨D.

16More exactly, ∀ and ∃ are generalisations of the min-conjunction ∧ and the max-
disjunction ∨ (described in Table 1 below).

9



Connective Definition Truth function
A→ B JA→ BK = min(1, 1− JAK + JBK)
¬A J¬AK = 1− JAK
A ∨B (A→ B)→ B JA ∨BK = max(JAK, JBK)
A ∧B ¬(¬A ∨ ¬B) JA ∧BK = min(JAK, JBK)
A YB ¬A→ B JA YBK = min (1, JAK + JBK)
A&B ¬(A→ ¬B) JA&BK = max(0, JAK + JBK− 1)
A↔ B (A→ B) ∧ (B → A) JA↔ BK = 1− |JAK− JBK|

Table 1: Propositional connectives of  Lukasiewicz logic (L)

In the truth function for ↔, | | is absolute value.
Let me give a few remarks on how to understand some of the connectives in

Table 1. I start by mentioning the similarity between the  Lukasiewicz implica-
tion→ and classical material implication, which we can denote→C. Essentially,
each of A → B and A →C B is true iff B is at least as true as A (see Smets
and Magrez 1987). More precisely, A → B is completely true (true to degree
1) iff B is at least as true as A; and A →C B is true iff A is false while B is
true, both A and B are false, or both A and B are true. When A is truer than
B, which in the classical case means that A is true and B is false, A →C B is
false. The situation is similar for→ because when A is completely true and B is
completely false (true to degree 0), A→ B is completely false. More generally,
when A is truer than B, A→ B is less than completely true but also sensitive to
how much truer A is than B in that A→ B is less true the truer A is compared
to B.

The connectives →, ¬ and Y are interdefinable as implication, negation
and disjunction are in classical logic (Cignoli, D’Ottaviano, and Mundici 2000,
pp. 78–79). And there is a standard duality between Y and & as they are related
via De Morgan laws such as � ¬(A & B) ↔ ¬A Y ¬B, which we can read as
saying that ‘not both A and B’ has the same truth value as ‘either not A or not
B’ (Gottwald 2001, pp. 181, 184).

The disjunction A ∨ B is true (to degree 1) if and only if at least one of A
and B is true (to degree 1), which is a property one might want at least one of
the disjunction connectives to have. And there is a duality via De Morgan laws
between ∨ and ∧ (Gottwald 2001, p. 184).

There are other many-valued versions of the connectives, besides those in Ta-
ble 1. For L and other many-valued logics, there are questions about which, if
any, versions of the connectives are suitable for modelling natural language sen-
tences containing ‘if . . ., then,’ ‘not,’ ‘or,’ or ‘and.’ And there are lists of desired
properties of the connectives.17 I will not try to make progress on these issues
in this paper. I will now merely briefly reply to a couple of objections about
connectives in many-valued logic, including those in L, in order to motivate the
use of many-valued logic and L.

17For more on these matters, see Gottwald (2001, pp. 5–6, 63–106, 391) and Smith (2008,
pp. 67–70).
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A common objection is that ‘A and not A’ should get truth value 0, but
JA ∧ ¬AK = 0.5 if JAK = 0.5.18 For example, let A represent the sentence
‘Ann is bald,’ and suppose that it is half-true. If we use ∧ for ‘and’ and ¬
for ‘not,’ then ‘Ann is bald and Ann is not bald’ becomes half-true. But one
might believe that such a contradiction should be completely false. Also, the
disjunction Y and the conjunction & might seem to behave strangely in some
cases. For example, let A still represent ‘Ann is bald,’ and let B represent ‘Bob
is bald.’ If JAK = JBK = 0.5, then JA YBK = 1, which may sound too high, and
JA&BK = 0, which may seem too low. In other words, when it is half-true that
Ann is bald and half-true that Bob is bald, it becomes completely true that Ann
or Bob is bald, and completely false that Ann and Bob are bald, which might
seem dubious.

I mention two replies to these objections. First, regarding A ∧ ¬A, there
are other forms of the law of contradiction which one can accept even if one
rejects that JA ∧ ¬AK is always 0 (Rescher 1969, pp. 143–148). Second, one
can argue that sometimes ∧ is a suitable formalisation of ‘and’ while in other
cases & is appropriate; for example, that ‘A and not A’ should be formalised as
A&¬A, which always has truth value 0 (Fermüller 2011, pp. 200–201). An anal-
ogous claim can be made about ∨ and Y as alternative formalisations of ‘or.’19

For example, Paoli (forthcoming) argues that classical logic is ambiguous and
collapses a distinction between two types of connectives. Classical disjunction,
conjunction and implication can each be disambiguated in two kinds of ways;
for example, classical disjunction can be disambiguated as ∨ or Y, and classical
conjunction can be disambiguated as ∧ or & (a formula may contain all of ∨,
Y, ∧ and &).

I use classical logic and induction at the meta level for two reasons: First,
it is common to do so (Williamson 1994, p. 130; Gottwald 2001, pp. 6–7;
Chakraborty and Dutta 2010, p. 1889; Dutta and Chakraborty 2016, p. 238).
Second, the object and meta levels are about different matters. It seems reason-
able that value statements such as ‘a is worse than b’ can have more than two
truth values. But classical logic and induction may be suitable for whether a
sentence has a given truth value or not, which kinds of proofs to accept, etc. In
the metalanguage, I use ‘⇒’ for implication in classical logic, and I have classical
logic in mind when I write ‘implies,’ ‘if . . ., then,’ ‘iff,’ ‘for all,’ ‘there is,’ etc.
Even though I assume classical logic at the meta level, my sequence arguments
are different from the classical sequence arguments in the literature. One dif-
ference is that the classical arguments assume that value statements such as ‘a
is better than b’ does not have an intermediate truth value such as 1

2 , while I
allow such truth values.

18See Fermüller (2011, pp. 199–200) and Smith (2017) which contains further references.
19Thanks to Erik Carlson for bringing up in an e-mail to the author that interpreting ‘and’

as ∧ is more plausible in some situations while interpreting ‘and’ as & seems more appropriate
when ‘A and B’ is a contradiction. Carlson made a similar point about Y.
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6 Many-valued relations and completeness

In this section and the next, I deal with the premises in sequence arguments
that use many-valued logic. I try to provide a range of options to someone who
would like to present a sequence argument. Still, to focus my investigation on
the sequence arguments that seem most interesting, I set a few options aside.
So there are transitivity and completeness conditions in the literature that I
will not attempt to use as premises in sequence arguments. In this section,
I first say which value relations may be used in our sequence arguments, and
then I quickly grant a few uncontroversial premises. I then turn to the use of
completeness conditions as premises in sequence arguments. I list several such
conditions from the literature, including the most common ones, and I assume
that someone formulating a sequence argument may use all of these except one.

I grant that someone formulating a sequence argument is free to use all of
the relations 4, ≺ and ∼. One might find ≺ and ∼ conceptually clearer than
4, and therefore avoid 4 or define 4 in terms of ≺ and ∼.20 Or one might find
it more parsimonious to take 4 as primitive and define ≺ and ∼ in terms of 4
(Hansson 2001, p. 322).

It is uncontroversial that any bad thing is equally bad as itself, at least as
bad as itself, and not worse than itself. In other words, ∼ and 4 are reflexive
and ≺ is irreflexive. For a many-valued binary relation R, these properties are
commonly defined as follows:21

Reflexivity := for all a, JaRaK = 1;

Irreflexivity := for all a, JaRaK = 0.

A sequence argument may contain the premises that ∼ and 4 are reflexive and
that ≺ is irreflexive, in the senses just defined, although these premises will only
have a minor role in this paper.22

The most common definitions of completeness of the single relation 4 seem
to be

Completeness (C4) := for all a, b, Ja 4 bK + Jb 4 aK ≥ 1;

Strong completeness := for all a, b,max(Ja 4 bK, Jb 4 aK) = 1

(Barrett and Pattanaik 1989, pp. 238–239; Llamazares 2005, p. 479; Fono and
Andjiga 2007, p. 668). I will look at sequence arguments with C4 as a premise,
but not strong completeness because it is too restrictive given that it rules out
both a 4 b and b 4 a having intermediate truth values between 0 and 1. To get
a feel for C4, note that C4 is equivalent to the following formula in L having
truth value 1: ∀a∀b(a 4 b Y b 4 a). This formula reads ‘for all a and b, a 4 b or
b 4 a,’ which is simply a standard statement of completeness of 4.

20Thanks to a reviewer for bringing up this matter.
21E.g., see Ovchinnikov and Roubens (1991, p. 319) and Moretti, Öztürk, and Tsoukiàs

(2016, p. 52). For other versions of reflexivity, see Dubois and Prade (1980, p. 73) and Dutta
and Chakraborty (2015, p. 101).

22I thank Rupert McCallum and a reviewer for suggesting that I take ∼ to be reflexive.

12



Instead of dealing only with 4, one can formulate notions of completeness
as connections between two or more of the relations 4, ≺ and ∼. I will now list
a couple of such notions that I grant as premises in sequence arguments. The
first such condition is

F := for all a, b, Ja ≺ bK = 1− Jb 4 aK

(e.g., Banerjee 1994; Barrett and Pattanaik 1989, pp. 238–239; Llamazares
2005, p. 480). One can motivate F as follows: If negation has the truth function
it has in L, which is seemingly the most common truth function for negation,
one can read F as saying that a ≺ b is as true as not b 4 a. Or one can think of
F as saying that the truth value of a ≺ b and the truth value of b 4 a together
exhaust the range of truth (they sum to 1, which represents maximal truth).

F is equivalent to the following formula in L having truth value 1:

F L := ∀a∀b(a ≺ b↔ ¬b 4 a).

For any relation R, ¬aRb means ¬(aRb).
One may want a notion of completeness for only ≺ and ∼, in which case

the following might be used (Van de Walle, De Baets, and Kerre 1998, pp. 116–
117):23

Trichotomy := for all a, b, Ja ≺ bK + Jb ≺ aK + Ja ∼ bK = 1.

As with F , one can think of trichotomy as saying that the truth values of a ≺ b,
b ≺ a, and a ∼ b together exhaust the range of truth values (since they sum to
1).

Whether reflexivity of ∼ and 4, irreflexivity of ≺, C4, F , F L and trichotomy
are ultimately plausible is beyond the scope of this paper. I assume for the sake
of argument that someone who wants to formulate a sequence argument is free
to use them as premises.

7 Transitivity of many-valued relations

There are many versions of transitivity of many-valued relations. Ten of them
are listed in Table 2 (I have shortened some of the names).24 There are more but
these ten cover a fair bit of the ground, and I have tried to include those most
relevant to sequence arguments. I consider these forms of transitivity mainly
because they figure in the literature, to which I largely defer for conceptual
discussion.25 Because the focus of this paper is on the validity of sequence
arguments, it is not necessary to consider the interpretation of or motivation
for the versions of transitivity, yet I will nonetheless make some brief remarks
about these matters.

23Thanks to a reviewer for suggesting the use of a trichotomy.
24T1–T8 are listed by Dasgupta and Deb (2001, p. 493); T9 and T10 are from Tanino (1984,

p. 119, 1990, p. 175) and Herrera-Viedma et al. (2004, p. 101).
25I thank a reviewer for this suggestion.
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In this section, R is a many-valued binary relation, the formulations of tran-
sitivity are for all a, b and c in the domain, and R is short for J R K.

T1 Probabilistic-sum transitivity If 0 < aRb and 0 < bRc, then
aRb+ bRc− aRb · bRc ≤ aRc

T2 Max-transitivity If 0 < aRb and 0 < bRc, then
max(aRb, bRc) ≤ aRc

T3 Weighted mean transitivity If 0 < aRb and 0 < bRc, then there
is λ ∈ (0, 1) such that λmax(aRb, bRc)
+(1− λ) min(aRb, bRc) ≤ aRc

T4 Min-transitivity min(aRb, bRc) ≤ aRc
T5 Product transitivity aRb · bRc ≤ aRc
T6 Sensitive transitivity If 0 < aRb and 0 < bRc, then 0 < aRc

T7 Weak min-transitivity If bRa ≤ aRb and cRb ≤ bRc, then
min(aRb, bRc) ≤ aRc

T8 ∆-transitivity aRb+ bRc− 1 ≤ aRc
T9 Multiplicative transitivity aRb · bRc · cRa = aRc · cRb · bRa
T10 Additive transitivity aRb+ bRc− 1

2 = aRc

Table 2: Versions of transitivity from the literature on fuzzy preference relations

Observation 1. T1 ⇒ T2 ⇒ T3 ⇒ T4 ⇒ T5 ⇒ T6.

Dasgupta and Deb (2001, p. 493) mention this observation and refer to
sources for proofs.

I will, in the next section, consider the validity of sequence arguments assum-
ing any of T1–T8, or restricted forms of these versions of transitivity, regardless
of whether these premises are plausible or not. Still, I will now provide some
background and comment briefly on the possible rationale for and plausibility
of some of the more important versions of transitivity. The purposes of this
are to make the versions of transitivity more understandable, to explain why I
set a couple of transitivity conditions (T9 and T10) aside, to explain why it is
worthwhile to consider the restricted versions of transitivity, and to ultimately
suggest directions for future research.

Min-transitivity (T4) is perhaps the most widely used form of transitivity
in many-valued logic. It is equivalent to the following formula in L having
truth value 1: ∀a∀b∀c(aRb ∧ bRc → aRc). This equivalence holds even if the
implication in the formula is not the  Lukasiewicz implication in Table 1, as long
as the implication has the degree ranking property: JA→ BK = 1 iff JAK ≤ JBK.
It has been mentioned as a property that each implication operation should
have, and the  Lukasiewicz implication has it (Gottwald 2001, pp. 97, 181).
The property can be seen as giving a rationale for why most of the versions of
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transitivity above are formulated in terms of ≤.
But T4 has been criticised, for example, by Basu (1984, p. 215), who uses

a counterexample, and suggests a version similar to T3 as a fix. T4 has also
been criticised for being too restrictive, and the similar but weaker T7 has been
proposed instead (e.g., Barrett and Pattanaik 1989, pp. 239–240; Dasgupta and
Deb 2001, p. 499).

T8 is equivalent to the following formula in L having truth value 1: ∀a∀b∀c(aRb
& bRc → aRc). That is, just like T4 but with the conjunction & instead of ∧.
Similarly, we can state T5 as a formula using the conjunction and implication
in product logic (Gottwald 2001, pp. 292, 308).

The following is indicative commentary on the plausibility of the versions of
transitivity. Eight of these forms of transitivity of 4 or ≺ seem problematic as
premises in a sequence argument in our framework (T1–T6, T9 and T10). T10
would be unsuitable so I will not consider it more, because if aRb+ bRc > 1.5,
then aRc > 1, which is outside of our sets of truth values. T1–T6 and T9 would
seemingly be intuitively problematic premises because of the following case (cf.
Barrett and Pattanaik 1985, p. 78): There are two bads b1 and b2. Hereafter,

I write m b-objects as mb; for example, 5b1 is 5 b1-objects. Let R represent 4
or ≺. Suppose 100b1R100b2 and 100b2R101b1 are at least 1

4 , which could be
sensible if b1 and b2 are very different and neither appears clearly at least as
bad as or worse than the other. Each of T1–T4 implies 100b1R101b1 is at least
1
4 , T5 implies it is at least 1

16 , and T6 implies it is greater than 0. As long as
100b1R100b2 > 0 and 100b2R101b1 > 0, each of T1–T6 implies 100b1R101b1 > 0.
T9 has this implication if we plausibly assume 101b1R100b1 > 0 because the left-
hand side of T9 becomes greater than 0 so all numbers on the right-hand side
must be greater than 0. These implications seem problematic. 100b1R101b1
might plausibly be 0 (and more plausibly less than 1

4 or 1
16 ) because, since b1

is something bad, fewer b1-objects are not worse than or equally bad as more
b1-objects but less bad.

The counterexamples against versions of transitivity I have just put forth
(except the technical point against T10) involve comparisons between different
amounts of the same type of bad (e.g., 100b1R101b1). One can claim that even
if all versions of transitivity in Table 2 are implausible, they are stronger than
needed; that is, that sequence arguments only need weaker forms of transitivity
as premises. More precisely, one can claim that sequence arguments only need
transitivity for different types of bads such as b1, b2 and b3, and I have not
presented any counterexamples to such weaker forms of transitivity. One could
weaken the forms of transitivity as in Table 3 so that they only hold for different
types of bads (m, n and k are positive integers, and that b, b′ and b′′ are distinct
means that b 6= b′, b′ 6= b′′ and b 6= b′′):
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T r5 Restricted product transitivity If b, b′ and b′′ are distinct, then
mbRnb′ · nb′Rkb′′ ≤ mbRkb′′

T r6 Restricted sensitive transitivity If b, b′ and b′′ are distinct, then
if 0 < mbRnb′ and 0 < nb′Rkb′′,
then 0 < mbRkb′′

Table 3: Examples of restricted versions of transitivity

To save space, I do not list all ten restricted versions of transitivity, but all
versions in Table 2 could be restricted in the analogous way. For any form of
transitivity, I write r when it is restricted to distinct b, b′ and b′′ as in T r5 and
T r6 .

The following case suggests that at least T r1 –T r4 seem intuitively problematic:
Suppose mb1Rnb2 = nb2Rkb3 = w ∈ (0, 0.5). T r1 –T r4 each implies mb1Rkb3 ≥
w, but it might plausibly be lower because if mb1Rnb2 and nb2Rkb3 are equally
close to false, it could perhaps be even closer to false that mb1Rkb3.

T9 and T r9 are equalities, but T1–T8 and T r1 –T r8 are not. Because T9 and T r9
are equalities, they postulate an exceptionally stringent relationship among the
truth values of aRb, bRc, cRa, etc. I therefore set T9 and T r9 aside.

Overall, the seemingly most acceptable forms of transitivity we are left with
are T r5 , T r6 , T7, T r7 , T8 and T r8 . The others seem more problematic, and a few
seem so unsuitable that I hereafter set them aside (T9, T r9 , T10 and T r10).

8 Sequence arguments using many-valued logic

In this section, I consider sequence arguments assuming T1–T8 or T r1 –T r8 . I find
that either of T1–T5 or T r1 –T r5 results in a valid sequence argument against the
claim that it is true to degree 1 that the first object b1 in the sequence is inferior
to the last object bn (Theorem 1). So does T6 or T r6 when the number of truth
values is finite (Theorem 2), but not when it is infinite (Theorem 3). Hence,
one can avoid sequence arguments if the number of truth values is infinite and
merely T6 or T r6 is granted. Alternatively, someone sympathetic to inferiority
can reply to these valid sequence arguments by saying that it need not be true
to degree 1 that b1 is inferior to bn. It may be true to a high degree w less than
1. This reply does not help much if either of T1–T4 or T r1 –T r4 is granted because
then there is a bi in the sequence such that it is true to at least degree w that
bi is inferior to its successor bi+1 (Theorem 4). But one can avoid this upshot
of sequence arguments if merely T5, T r5 , T6 or T r6 is granted because then it can
be true to a high degree w that b1 is inferior to bn without it being the case
for any object that it is true to at least degree w that it is inferior its successor
(Theorem 5). T7,T r7 , T8 and T r8 generally do not result in a valid sequence
argument, even if it is true to degree 1 that b1 is inferior to bn (Theorem 6),
although T7 and T r7 may do so when there are only three truth values. I leave
an investigation of the following kind of sequence arguments for future research
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(I focus on stronger sequence arguments in this paper): if we grant one of the
seemingly acceptable premises T r5 , T7 or T r7 , and if it is true to a high degree w
less than 1 that b1 is inferior to bn, must there be a bi such that it is true to a
counterintuitively high degree less than w that bi is inferior to bi+1?26

I assume the family of logics M in all of my theorems and the technical result
in appendix H. I assume the family of  Lukasiewicz logics L in one technical
result (in appendix E). For the definitions of M and L, see §5. When I speak
of reflexivity, irreflexivity, F , C4, trichotomy, T1–T8 or T r1 –T r8 , I assume they
are meta-level conditions on the structures (as above, a structure is denoted S).
For example, if T4 is assumed, we are considering only the class of structures in
which T4 holds; the structures that satisfy T4.

Recall that L is our formal language with three sorts and symbols ≺, f , etc.
as described in §5.

I use � for the notion of ‘is inferior to’ I work with in this section. � is an
abbreviation defined as follows:

b� b′ := ∃m∀n(f(m, b) ≺ f(n, b′)).

Informally, I read b� b′ as ‘there is a positive integer m such that m b-objects
are worse than any number (in Z+) of b′-objects.’27 I abbreviate f(m, b) as mb,
so we can write b� b′ as ∃m∀n(mb ≺ nb′). When I say ‘is inferior to’ without
mentioning a truth degree, I mean that it is true to degree 1.

The first result is that, assuming M, F and that any of the transitivity
conditions T1–T5 or T r1 –T r5 holds for 4, we get a valid sequence argument.

Theorem 1. In M, if F holds and any of T1–T5 or T r1 –T r5 holds for the relation
4, then in any finite sequence of objects in which the first object is inferior to
the last object, there is an object that is inferior to its successor.

Proof in appendix A. In other words, Theorem 1 says that, assuming M, in
every structure S for L in which F holds and any of T1–T5 or T r1 –T r5 holds for
4, and in which there is a finite sequence b1, . . . , bn where S � b1 � bn, there is
a bi with i ∈ {1, . . . , n − 1} such that S � bi � bi+1. Theorem 1 is phrased as
it is for readability, and the other theorems are phrased similarly for the same
reason, but all could be stated in terms of S, �, �, etc. along the lines just
indicated for Theorem 1.

Theorem 1 has the problem that at least T1–T5 and T r1 –T r4 seem problem-
atic, or so I suggested in §7. But this is a matter of intuition and debatable.
Regardless, T r5 might be acceptable, so we have a valid sequence argument with
potentially acceptable premises.

The forms of transitivity considered so far (T1–T5 and T r1 –T r5 ) are fairly
strong. The weaker T6 and T r6 result in a valid sequence argument when the
number of truth values is finite, but not when it is infinite, as the next two
theorems show.

26See the remark at the end of appendix F for more information.
27Thanks to Graham Leigh regarding the formulation of �.
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Theorem 2. In Mp, if F holds and T6 or T r6 holds for the relation 4, then
in any finite sequence of objects in which the first object is inferior to the last
object, there is an object that is inferior to its successor.

Proof in appendix B. Theorems 3, 4 and 6 below deal only with unrestricted
forms of transitivity because if the unrestricted form holds, so does the restricted
form (i.e., for all i ∈ {1, 2, . . . , 10}, Ti ⇒ T ri ).

Theorem 3. In M∞ there is a structure for L that satisfies F , C4, trichotomy,
reflexivity of the relations 4 and ∼, irreflexivity of the relation ≺, and T6 for 4,
≺ and ∼, and which contains a finite sequence of objects in which the first object
is inferior to the last object, but in which no object is inferior to its successor.

Proof in appendix C. Theorem 3 shows that, assuming M∞, even if we
grant quite a large number of conditions such as trichotomy and T6 for all three
value relations, we can still avoid the purportedly unappealing implications
of inferiority. Note that in theorems 1, 2 and 4 we want to rely on few, weak
premises, while in theorems 3, 5 and 6 we want to allow many, strong conditions.

Someone sympathetic to inferiority can reply to theorems 1 and 2 by saying
that it need not be true to degree 1 that b1 is inferior to bn. It may be true
to a high degree w less than 1. But the next theorem (Theorem 4) shows that,
given F and any of T1–T4 or T r1 –T r4 for 4, if Jb1 � bnK = w ∈ [0, 1], then there
is a bi in the sequence such that Jbi � bi+1K ≥ w. So the upshot of the next
theorem is that if one accepts the assumptions in it, one does not avoid sequence
arguments by claiming that it is merely true to degree w ∈ [0, 1) that the first
object is inferior to the last.

Theorem 4. In M, if F holds and any of T1–T4 or T r1 –T r4 holds for the relation
4, then for any w ∈ [0, 1], and in any finite sequence of objects in which it is
true to degree w that the first object is inferior to the last object, there is an
object such that it is true to at least degree w that it is inferior to its successor.

Proof in appendix D.
In appendix E, I explain how we could proceed and get a result similar to

Theorem 4 if we were to use the first approach in §4 and start with a specific
family of logics such as L.

The next theorem shows that if we grant merely T5 or T6, then, as long
as there are at least 5 truth values, we can avoid sequence arguments in the
following sense: it can be true to degree w ∈ [ 34 , 1) that the first object is
inferior to the last object without there being any object such that it is true to
at least degree w that it is inferior to its successor.

Theorem 5. In M∞ and Mp≥5, there is a structure for L that satisfies F , C4,
trichotomy, reflexivity of the relations 4 and ∼, irreflexivity of the relation ≺,
and T5 and T6 for 4, ≺ and ∼, and which contains a finite sequence of objects
in which it is true to degree w ∈ [ 34 , 1) that the first object is inferior to the last
object, but in which there is no object such that it is true to at least degree w
that it is inferior to its successor.
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Proof in appendix F. The theorem says ‘[ 34 , 1)’ because when the set of truth
values is W5, 3

4 is the greatest truth value less than 1. When the number of
truth values is greater, we can let w be a greater number in [34 , 1).

The next and final theorem shows that T7 and T8 are generally not enough
to get a sequence argument (so neither are T r7 and T r8 ), even if it is true to
degree 1 that the first object is inferior to the last. The theorem deals with T7
and T8 at the same time for brevity and because one might try to use several
transitivity conditions as premises in one argument.

Theorem 6. In M∞ and Mp≥4 there is a structure for L that satisfies F , C4,
trichotomy, reflexivity of the relations 4 and ∼, irreflexivity of the relation ≺,
and T7 and T8 for 4, ≺ and ∼, and which contains a finite sequence of objects
in which the first object is inferior to the last object, but in which no object is
inferior to its successor.

Proof in appendix G. Theorem 6 is about when there are more than three
truth values, which I find more interesting than the case of only three truth
values, but one can tell from the proof that an almost identical structure satisfies
T8 in M3. We can thereby get a result like Theorem 6 in M3 about only T8
instead of both T7 and T8. I leave it unanswered whether, assuming M3, T7 or
T r7 results in a valid sequence argument.

One may respond to theorems 3, 5 and 6, which show that one can avoid
certain sequence arguments, by saying that 4, ≺ and ∼ have some counterintu-
itive properties in those simple structures. A reason why one might find them
counterintuitive is that the truth values of the value statements are independent
of the number of each type of bad in most cases. One may want to see a more
reasonable way of making value comparisons that avoids sequence arguments.
That is a fair point. The structures in theorems 3, 5 and 6 are very simple and
merely meant to be sufficient for logical purposes. In appendix H, I present a
more complex example structure with more reasonable value comparisons. In
the end, one might very well want a different and perhaps even more complex
way of making value comparisons. My aims with this example structure are
merely to point out a direction towards making reasonable value comparisons
which avoid at least some type of sequence argument and to illustrate how one
can confirm that such a way of making value comparisons does not violate some
reasonable conditions (I use reflexivity of ∼ and 4, irreflexivity of ≺, F , C4

and T8 for 4 as examples of such conditions).
In this example structure, it is true to degree 0.7 that the first bad is inferior

to the last, but there is no bad such that it is true to at least degree 0.7 that it
is inferior to its successor. I assume M∞, and my structure contains the three
bads b1, b2 and b3. Jb1 � b3K = 0.7, but Jb1 � b2K = Jb2 � b3K = 0.5. The
truth degrees of value comparisons depend on the quantities of the bads, which
is one respect in which this structure is more intuitive than those in the proofs
of theorems 3 and 6. Value comparisons in terms of ≺ have the following truth
values: If m ≥ n, Jmb1 ≺ nb3K = 1; that is, a given number of b1-objects are
definitely worse than fewer or the same number of b3-objects. If m < n, then
for any fixed m, Jmb1 ≺ nb3K decreases and approaches a limit, which we can
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call w, as n increases. This resembles existing ideas of diminishing marginal
value (e.g., Carlson 2000; Binmore and Voorhoeve 2003; Rabinowicz 2003),
but, importantly, the intuition is not that additional b3-objects contribute less
and less disvalue to the whole. Rather, the intuition is that for a given number
m of b1-objects, it is true to some degree w that m b1-objects are worse than
any number of b3-objects. And while it should become less true that m b1-
objects are worse than n b3-objects as n increases, it should always be true to
at least degree w. For a higher fixed m, the limit, which we can call w′, is
higher (i.e., w < w′). The intuition is that for a higher m, it is truer that m
is a sufficient number of b1-objects for this collection of b1-objects to be worse
than any number of b3-objects. As m and then n approach infinity, Jmb1 ≺ nb3K
approaches 0.7; that is, Jb1 � b3K = 0.7. Value comparisons of b1-objects to b2-
objects and of b2-objects to b3-objects work analogously, except that the truth
value 0.5 instead of 0.7 is approached.

9 Concluding remarks

My findings are partly good news and partly bad news for inferiority and similar
views such as those in §1 and §2. My findings are bad news in that we get valid
sequence arguments if we grant a form of completeness and any of several strong
forms of transitivity (T1–T4 or T r1 –T r4 ). The weaker forms of transitivity T5 and
T r5 result in valid sequence arguments when it is true to degree 1 that the first
object b1 in the sequence is inferior to the last object bn, and so do the even
weaker T6 and T r6 when it is true to degree 1 that b1 is inferior to bn and the
number of truth values is finite.

However, my findings are good news in that one can readily formulate argu-
ments suggesting that all of the just mentioned forms of transitivity, except T r5
and T r6 , are intuitively problematic. And even if T5, T r5 , T6 and T r6 are granted
as premises, one can, at least to some extent, avoid the purportedly unappealing
implications of inferiority by holding that it is merely true to some high degree
less than 1 that b1 is inferior to bn. Or if merely T6 and T r6 are granted as
premises, one can avoid sequence arguments by holding that there are infinitely
many truth values. The seemingly acceptable forms of transitivity T7, T r7 , T8
and T r8 are generally not enough to get a valid sequence argument. If there are
only three truth values, T7 and T r7 may result in a valid sequence argument, but
I would prefer to use more than three truth values. The path to a convincing
sequence argument in our logical framework looks narrow.

We get the most convincing sequence arguments when we use the moderately
strong forms of transitivity as premises. In particular, the most promising path
to a convincing sequence argument seems to be to use T r5 as a premise; perhaps
T7 or T r7 could also be used. To make a sequence argument in our framework
convincing, a reasonable step would be to argue extensively for the plausibility
of using T r5 (or perhaps T7 or T r7 ) as a premise.28 Another reasonable step is

28E.g., an objection to the use of T r
5 or T r

7 could be that it is ad hoc to restrict transitivity
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to investigate, more thoroughly than I have done, what constraints T r5 , T7 and
T r7 put on the truth values of inferiority relationships in sequences, including in
long sequences, which could result in the following forms of sequence arguments,
which are weaker than the ones I have considered: If it is true to degree, say,
0.95 that b1 is inferior to bn, even if there need not be any bi in the sequence
such that is true to at least degree 0.95 that bi is inferior to bi+1, perhaps
there must be a bi such that the truth value of that bi is inferior to bi+1 must
be counterintuitively high.29 Such forms of sequence arguments are yet to be
explored.30

A Proof of Theorem 1

We can establish Theorem 1 using the following lemma and induction (cf.
Arrhenius and Rabinowicz 2015, p. 241):

Lemma 1. In M, if F holds and any of T1–T5 or T r1 –T r5 holds for the relation
4, then for any distinct objects b, b′ and b′′, if b is inferior to b′′, then b is
inferior to b′ or b′ is inferior to b′′.

Proof. Suppose b, b′ and b′′ are distinct. Let w1 := Jb � b′K and w2 := Jb′ �
b′′K. Suppose Jb � b′′K = 1 but w1, w2 ∈ [0, 1). Pick ε ∈ (0, 1) such that
w1 + ε < 1 and w2 + ε < 1. Let y := w1 + ε and z := w2 + ε. Pick m such
that J∀k(mb ≺ kb′′)K > y + z − y · z. There is such an m because y + z − y ·
z < 1 and, by the assumption Jb � b′′K = 1 and the definitions of � and ∃,
sup {J∀k(mb ≺ kb′′)K : m ∈ Z+} = 1. To see that y + z − y · z < 1, note that
1− (y + z − y · z) = (1− y)(1− z) > 0, so y + z − y · z must be less than 1. By
the definition of ∀, for all k,

(1) Jmb ≺ kb′′K > y + z − y · z.

Pick n such that

(2) Jmb ≺ nb′K < y.

There is such an n because Jb � b′K = w1 < y and, by the definitions of �, ∃
and ∀, for all m there is an n such that Jmb ≺ nb′K < y. Analogously, pick k
such that

conditions so that they only hold for different types of bads. Thanks to Magnus Vinding for
mentioning this.

29See the first paragraph of §8 and the remark at the end of appendix F.
30I am grateful for comments on earlier versions by Roger Crisp, Kaj Börge Hansen,

Francesco Paoli, Nils Sylvan and Alex Voorhoeve. I thank the ALOPHIS group at the Univer-
sity of Cagliari, the LSE Choice Group, the PhD seminar in practical philosophy at Stockholm
University, and Theron Pummer for helpful discussion. My supervisors Gustaf Arrhenius and
Krister Bykvist have kindly contributed in many ways. The following people have been ex-
ceptionally helpful: Erik Carlson, Valentin Goranko, Laurenz Hudetz, Graham Leigh, Rupert
McCallum, Karl Nygren, Daniel Ramöller and Magnus Vinding. Two anonymous reviewers
gave very useful comments, and one of them was unusually generous and gave many detailed,
skilled comments. I am grateful for thoughts on an ancestor to this paper from Campbell
Brown, Jens Johansson, Anna Mahtani and Wlodek Rabinowicz. Thanks to Gunnar Björnsson
and Mozaffar Qizilbash for answering questions related to my research.
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(3) Jnb′ ≺ kb′′K < z.

By (1), (2), (3) and F ,

w3 := Jkb′′ 4 nb′K = 1− Jnb′ ≺ kb′′K > 1− z;
w4 := Jnb′ 4 mbK = 1− Jmb ≺ nb′K > 1− y;

w5 := Jkb′′ 4 mbK = 1− Jmb ≺ kb′′K < 1− (y + z − y · z).

w3 · w4 > (1 − z)(1 − y) = 1 − (y + z − y · z) > w5, which contradicts T5 and
T r5 of 4, which imply w3 · w4 ≤ w5. By Observation 1, T1–T4 and T r1 –T r4 are
contradicted too. Assuming classical logic at the meta level, we have a proof by
contradiction of Lemma 1.

We use Lemma 1 in the following induction on the length of the sequence to
establish Theorem 1: Base step: The sequence contains two objects. If the first
object is inferior to the last object, the first object is inferior to its successor.
Induction hypothesis: When the length of the sequence is n objects (n ≥ 2), if
the first object is inferior to the last object, there is an object in the sequence
that is inferior to its successor. Induction step: The length is n + 1 objects.
Suppose the first object is inferior to the last object (object n + 1). If object
n is inferior to object n + 1, an object is inferior to its successor. If object n
is not inferior to object n+ 1, then, by Lemma 1, the first object is inferior to
object n. By the induction hypothesis, there is an object in the sequence that
is inferior to its successor.

B Proof of Theorem 2

We can establish the theorem by a lemma and induction. The induction is the
same as in appendix A except that Lemma 2 is used so I omit the induction.

Lemma 2. In Mp, if F holds and T6 or T r6 holds for the relation 4, then for
any distinct objects b, b′ and b′′, if b is inferior to b′′, then b is inferior to b′ or
b′ is inferior to b′′.

Proof. Suppose b, b′ and b′′ are distinct and Jb � b′′K = 1. Jb � b′′K = 1 iff
sup{J∀k(mb ≺ kb′′)K : m ∈ Z+} = 1 so because there are finitely many truth
values, there is an m such that J∀k(mb ≺ kb′′)K = 1 and, by the definition of ∀,
such that Jmb ≺ kb′′K = 1 for all k. By F ,

(1) there is an m such that Jkb′′ 4 mbK = 0 for all k.

Case 1. Jb′ � b′′K < 1. Thus, for all n, there is a k such that Jnb′ ≺ kb′′K < 1
and, by F , such that Jkb′′ 4 nb′K > 0. So, by (1), there is an m such that for
any choice of n, there is a k such that Jkb′′ 4 nb′K > 0 and Jkb′′ 4 mbK = 0. By
T6 or T r6 of 4, Jnb′ 4 mbK = 0 and, by F , Jmb ≺ nb′K = 1. So there is an m
such that for any n, Jmb ≺ nb′K = 1; that is, Jb� b′K = 1.

Case 2. Jb � b′K < 1. Hence, for all m, there is an n such that Jmb ≺
nb′K < 1 and, by F, such that Jnb′ 4 mbK > 0. So, by (1), there is an m and
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an n such that Jnb′ 4 mbK > 0 and Jkb′′ 4 mbK = 0 for all k. By T6 or T r6
of 4, Jkb′′ 4 nb′K = 0 for all k; hence, by F , Jnb′ ≺ kb′′K = 1 for all k. So
Jb′ � b′′K = 1.

C Proof of Theorem 3

Let S contain the domains Z+ = {1, 2, 3, . . .}, B = {b1, b2, b3} and Q = Z+×B,
and the function f : Z+ × B → Q, which is simply a bijection that maps each
ordered pair 〈m, b〉 in Z+ × B to the same ordered pair 〈m, b〉 in Q. For all
m,n ∈ Z+ and b ∈ B, let

Jmb1 ≺ nb3K = w;

Jmb1 ∼ nb3K = Jnb3 ∼ mb1K = Jnb3 4 mb1K = 1− w;

Jmb1 4 nb3K = Jmb1 4 nb2K = Jmb2 4 nb3K = 1;

Jnb3 ≺ mb1K = Jnb2 ≺ mb1K = Jnb3 ≺ mb2K = 0;

Jmb1 ≺ nb2K = Jmb2 ≺ nb3K = w′;

Jnb2 4 mb1K = Jnb3 4 mb2K = 1− w′;
Jmb1 ∼ nb2K = Jnb2 ∼ mb1K = Jmb2 ∼ nb3K = Jnb3 ∼ mb2K = 1− w′;
Jmb ≺ nbK = 0;

Jmb 4 nbK = Jmb ∼ nbK = 1;

where w = 1− 1
2m and w′ = 1

2 . For example, Jmb1 ∼ nb3K = 1
2m .

That was the description of S. In S, b1 is inferior to b3 (i.e., S � b1 � b3)
because sup{J∀n(mb1 ≺ nb3)K : m ∈ Z+} = 1. It is easy to confirm the
following: there are no other inferiority relationships, ≺ is irreflexive, 4 and
∼ are reflexive, and F , C4, trichotomy, and T6 for 4, ≺ and ∼ hold in S.
Confirming T6 is the most complicated task so let us do that here. To violate T6
for a relation R, we need the consequent JaRcK of T6 to not be greater than 0. In
S, 4 and ∼ always map to truth values greater than 0, so T6 holds for 4 and ∼.
To violate T6 for ≺, both parts of the antecedent of T6 need to be greater than
0. We only get that with Jmb1 ≺ nb2K and Jnb2 ≺ kb3K, where m,n, k ∈ Z+, in
the antecedent, in which case we get Jmb1 ≺ kb3K in the consequent, which is
greater than 0, so T6 holds for ≺.

D Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 1 in appendix A.
We start with the following lemma:

Lemma 3. In M, if F holds and any of T1–T4 or T r1 –T r4 holds for the relation
4, then for any w ∈ [0, 1] and any distinct objects b, b′ and b′′, if it is true to
degree w that b is inferior to b′′, then it is either true to at least degree w that
b is inferior to b′ or true to at least degree w that b′ is inferior to b′′.
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Proof. The proof of Lemma 3 is very similar to the proof of Lemma 1 in ap-
pendix A, so I mainly note the differences. Suppose Jb � b′′K = w ∈ (0, 1] and
w1, w2 ∈ [0, w). Pick ε ∈ (0, 1) such that w1 + ε < w and w2 + ε < w. Let
y := w1 + ε and z := w2 + ε. Pick m such that J∀k(mb ≺ kb′′)K > max(y, z).31

(2) and (3) are the same as in appendix A, but (1) is different:

(1) Jmb ≺ kb′′K > max(y, z).

As in appendix A, we get the following, where the only difference from ap-
pendix A is that here we have w5 < 1−max(y, z):

w3 := Jkb′′ 4 nb′K = 1− Jnb′ ≺ kb′′K > 1− z;
w4 := Jnb′ 4 mbK = 1− Jmb ≺ nb′K > 1− y;

w5 := Jkb′′ 4 mbK = 1− Jmb ≺ kb′′K < 1−max(y, z).

Note that min(w3, w4) > min(1 − z, 1 − y) = 1 − max(y, z) > w5, which con-
tradicts T4 and T r4 for 4, which imply min(w3, w4) ≤ w5. By Observation 1,
T1–T3 and T r1 –T r3 are also contradicted.

We can then establish Theorem 4 by the following induction on the length
of the sequence, which is similar to the induction in appendix A:32 Base step:
The sequence contains two objects. If it is true to degree w that the first object
is inferior to the second, it is true to degree w that the first is inferior to its
successor. Induction hypothesis: When the length of the sequence is n objects,
if it is true to degree w that the first object is inferior to the last object, there
is an object in the sequence such that it is true to at least degree w that it is
inferior to its successor. Induction step: The length is n + 1 objects. Suppose
it is true to degree w that the first object is inferior to the last object (object
n+ 1). If it is true to at least degree w that object n is inferior to object n+ 1,
then there is an object such that it is true to at least degree w that it is inferior
to its successor. If it is not true to at least degree w that object n is inferior
to object n+ 1, then, by Lemma 3, it is true to at least degree w that the first
object is inferior to object n. By the induction hypothesis, there is an object
in the sequence such that it is true to at least degree w that it is inferior to its
successor.

E Using the first approach and starting from
 Lukasiewicz logic (L)

The purpose of this appendix is to illustrate a use of the first approach in §4 by
starting from L and its connectives. We do not need the content of this appendix

31I am grateful to a reviewer for pointing out how one can prove Theorem 4 similarly to
how Theorem 1 was proved by, among other things, using max(y, z) instead of y + z − y · z.

32Thanks to Valentin Goranko for suggesting that one can do induction on the length of
the sequence.
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for the main results of this paper because we already have Theorem 4, which is
a more general result than what we get in this appendix.

Suppose that instead of starting our investigation of sequence arguments
with premises such as F and the versions of transitivity in tables 2 and 3,
we start with notions of completeness and transitivity formulated using the
connectives of L (see Table 1), for example, the following (from §6 and §7):

F L := ∀q∀q′(q ≺ q′ ↔ ¬q′ 4 q);
T L
4 := ∀q∀q′∀q′′(q 4 q′ ∧ q′ 4 q′′ → q 4 q′′).

We wonder what ramifications such premises have for inferiority among bads
in a sequence. To keep with the spirit of building from the connectives of L, we
could formulate

I := ∀b∀b′∀b′′(b� b′′ → b� b′ ∨ b′ � b′′),

and then a lemma in L:

Lemma 4. F L, T L
4 � I.

The following is an outline of a proof of Lemma 4: Suppose (1) JF LK = 1;
(2) JT L

4 K = 1; (3) JIK < 1. By the definition of ∀ and the semantics of the
connectives, (1) is equivalent to F , (2) is equivalent to T4, and (3) iff there are
b, b′ and b′′ such that Jb� b′′K > max(Jb� b′K, Jb′ � b′′K). Let w := Jb� b′′K,
w1 := Jb� b′K and w2 := Jb′ � b′′K, and then reason as in the proof of Lemma 3
to get a contradiction. Assuming classical logic at the meta level, we have a
proof by contradiction of that JF LK = 1 and JT L

4 K = 1 imply JIK = 1.
Because Lemma 4 is very similar to Lemma 3, we could use induction as

in appendix D to get a result similar to Theorem 4, but with L instead of M
and with T L

4 instead of T1–T4 and T r1 –T r4 . That is, we could conclude: In L, if
F L and T L

4 hold (true to degree 1), then for any w ∈ [0, 1], and in any finite
sequence of objects in which it is true to degree w that the first object is inferior
to the last object, there is an object such that it is true to at least degree w
that it is inferior to its successor.

F Proof of Theorem 5

We need to show that for each of the infinite number of logics in the families M∞
and Mp≥5, there is at least one structure with the properties listed in Theorem 5.
We do that by letting each structure be the same as in appendix C, except that
here our definitions of w and w′ are different from the definitions of w and w′

in appendix C. When the number p of truth values is finite and at least five
(i.e., Wp≥5), let w be the greatest truth value less than 1, and let w′ be the
greatest truth value less than w. For example, when the set of truth values is
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W5 =
{

0, 14 ,
2
4 ,

3
4 , 1
}

, w = 3
4 and w′ = 2

4 . In other words, for Wp≥5, let

w =
p− 2

p− 1
;

w′ =
p− 3

p− 1
.

When the set of truth values is W∞, we can, for simplicity, let w = 9
10 and

w′ = 8
10 just as for W11.

For Wp≥5, we have w ∈ [ 34 , 1) and w′ < w, which is all we need to use in
most of the proof (except when we confirm T5 and T6 for 4 and ∼). As in
appendix C, the only non-trivial part of the proof is to confirm transitivity, so
I omit the other parts of the proof.

By confirming T5, we also confirm T6 because, by Observation 1, T5 ⇒ T6.
T5 holds for ≺ for essentially the same reason as T6 holds for ≺ in appendix C:
to violate T5, both of the factors on the left-hand side of T5 would need to be
greater than 0, but then we would get w′ ·w′ ≤ w, which holds because w′ < w
and w,w′ ∈ [0, 1].

It remains to confirm T5 for 4 and ∼. I use the notation that R represents
4 and ∼, m,n, k ∈ Z+ and b, b′ ∈ B.

Case 1. J bR bK is the form of at least one of the factors in T5 or the right-
hand side of T5.

Subcase 1a. JmbRnbK · JnbRkb′K ≤ JmbRkb′K.

Subcase 1b. Jmb′RnbK · JnbRkbK ≤ Jmb′RkbK.

Subcase 1c. JmbRnb′K · Jnb′RkbK ≤ JmbRkbK.

T5 holds in subcases 1a and 1b because for all w1, w2 ∈ [0, 1], w1 ·w2 ≤ w2 and
w1 · w2 ≤ w1. T5 holds in subcase 1c because JmbRkbK = 1.

Case 2. J bR bK is not the form of any of the factors in T5 or the right-hand
side of T5. To violate T5, the right-hand side of T5 must be less than 1.

Subcase 2a. The right-hand side of T5 is 1−w′. To violate T5, the left-hand
side of T5 would need to be greater than 1 − w′, so both of the factors
on the left-hand side of T5 would need to be greater than 1 − w′; that
is, both would need to be 1. But, except for J bR bK, only Jmb1 4 nb3K,
Jmb1 4 nb2K and Jmb2 4 nb3K equal 1, and the only combination of them
that could be on the left-hand side of T5 is Jmb1 4 nb2K · Jnb2 4 kb3K. But
then we get Jmb1 4 kb3K = 1 on the right-hand side of T5, so T5 holds.

Subcase 2b. The right-hand side of T5 is 1− w.

The rest of the proof is about subcase 2b. There are three ways in which the
right-hand side of T5 can be 1− w:

Jmb1 ∼ nb2K · Jnb2 ∼ kb3K ≤ Jmb1 ∼ kb3K;
Jmb3 ∼ nb2K · Jnb2 ∼ kb1K ≤ Jmb3 ∼ kb1K;
Jmb3 4 nb2K · Jnb2 4 kb1K ≤ Jmb3 4 kb1K.
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We confirm that all three inequalities hold in our structures by noting that each
of them is equivalent to

(1− w′)(1− w′) ≤ 1− w.

We replace w′ and w by our definitions of them to get(
1− p− 3

p− 1

)(
1− p− 3

p− 1

)
≤ 1− p− 2

p− 1
,

which simplifies to 5 ≤ p, which holds in our structures. That completes the
proof.

Remark. How much lower than Jb1 � b3K can Jb1 � b2K and Jb2 � b3K be?
Because of F , the key constraint is that for any m,n, k ∈ Z+ and b, b′, b′′ ∈ B,
we need (1 − Jnb′ ≺ kb′′K)(1 − Jmb ≺ nb′K) ≤ 1 − Jmb ≺ kb′′K to satisfy T5
for 4. For example, in our structure in M101 in which Jb1 � b3K = w = 0.99,
we need w′ ≥ 0.9, and hence Jb1 � b2K ≥ 0.9 and Jb2 � b3K ≥ 0.9. In this
example, it might be a problem for inferiority that there is an object such that
it is true to at least the perhaps counterintuitively high degree 0.9 that it is
inferior to its successor. But the structures in this appendix are simple and
they have an unrealistically short sequence containing only the three bads b1,
b2 and b3, so this might not be a problem with longer sequences and more
complex structures. As I essentially mentioned in the beginning of §8, I leave
the following related, interesting question for future research: given different
values of Jb1 � bnK (e.g., 0.95), how low can the maximum value among all
Jbi � bi+1K for i ∈ {1, . . . , n − 1} (and all Jbi � bi−1K for i ∈ {2, . . . , n}) in
a finite sequence be, if the sequence might be long (e.g., b1, . . . , b20), the value
relations have intuitive properties (e.g., Jmb4 ≺ nb12K varies intuitively as m
and n vary; see appendix H), and we grant T r5 (or T7 or T r7 ) for the relations
4, ≺ and ∼ as well as the other premises that I have granted such as F and
reflexivity of ∼? The greater this maximum truth value must be, the stronger
the sequence argument is.
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G Proof of Theorem 6

Let the new structures have the same domains and function as in appendix C,
and let R represent ≺ and 4. For all m,n ∈ Z+ and b, b′ ∈ B let

Jmb1Rnb3K = 1;

Jnb3Rmb1K = 0;

Jmb1Rnb2K = Jmb2Rnb3K = w;

Jnb2Rmb1K = Jnb3Rmb2K = 1− w;

Jmb ≺ nbK =

1 if m > n,

0 if m ≤ n;

Jmb 4 nbK =

1 if m ≥ n,

0 if m < n;

Jmb ∼ nb′K =

1 if m = n and b = b′,

0 otherwise;

where w ∈ (0.5, 1).
The only non-trivial task is to confirm that the transitivity conditions hold,

so I omit the rest of the proof.
T7 and T8 for ∼ hold because of the following: To violate T7 or T8 for

∼, we need the form 〈mb ∼ nb′, nb′ ∼ kb′′,mb ∼ kb′′〉, where m,n, k ∈ Z+;
b, b′, b′′ ∈ B; Jmb ∼ nb′K > 0; and Jnb′ ∼ kb′′K > 0. We only get this when
m = n, b = b′, n = k and b′ = b′′. But then T7 and T8 for ∼ hold because
min(1, 1) ≤ 1 and 1 + 1− 1 ≤ 1.

T7 and T8 for R hold when the form bR b is on the left-hand side of the
inequality in the transitivity condition because to then get the form 〈aRb, bRc,
aRc〉, we need (i) 〈 bR b, bR b′, bR b′〉 or (ii) 〈 b′R b, bR b, b′R b〉. In either
case, T7 and T8 for R hold because of the following: If b 6= b′, then the truth
value that R maps to is independent of m and n, and for any w1, w2 ∈ [0, 1],
min(w1, w2) ≤ w2 and w1+w2−1 ≤ w2. If b = b′, there is no difference between
(i) and (ii); we get 〈mbRnb, nbRkb,mbRkb〉. To violate T7 or T8 for R, we need
JmbRnbK > 0, JnbRkbK > 0, and JmbRkbK < 1. So, to violate T7 or T8 for ≺,
we need m > n, n > k and m ≤ k, which is a contradiction. To violate T7 or
T8 for 4, we need m ≥ n, n ≥ k and m < k, which is also a contradiction.

It remains to confirm T7 and T8 for R when nothing on the left-hand side
of T7 or T8 has the form bR b. In this case, to violate T7, both arguments of
the min function in T7 need to be at least w for the antecedent (bRa ≤ aRb
and cRb ≤ bRc) of T7 to hold. The only combination of arguments which
are at least w with the form 〈aRb, bRc〉 is 〈mb1Rnb2, nb2Rkb3〉. But then we
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get min(Jmb1Rnb2K, Jnb2Rkb3K) ≤ Jmb1Rkb3K = 1, which holds, so T7 for R is
confirmed.

To violate T8, the left-hand side of the inequality in T8 must be greater than
0. There are three such cases in which the terms on the left-hand side have the
form 〈aRb, bRc〉. In these cases, T8 implies the following for any m,n, k ∈ Z+:

Jmb1Rkb3K + Jkb3Rnb2K− 1 ≤ Jmb1Rnb2K, i.e., 1 + 1− w − 1 ≤ w;

Jnb2Rmb1K + Jmb1Rkb3K− 1 ≤ Jnb2Rkb3K, i.e., 1− w + 1− 1 ≤ w;

Jmb1Rnb2K + Jnb2Rkb3K− 1 ≤ Jmb1Rkb3K, i.e., w + w − 1 ≤ 1.

These inequalities hold so T8 for R is confirmed. That concludes the proof.

Remark. T8 holds in a structure that is exactly like those described so far in
this appendix except that w = 1

2 . In that case, we would only use the three
truth values in W3 =

{
0, 12 , 1

}
, so we would get a result like Theorem 6 in M3

about only T8.

H A more intuitive structure

I assume M∞ and present a structure S in which it is true to degree 0.7 that
the first object is inferior to the last object, but in which there is no object such
that it is true to at least degree 0.7 that it is inferior to its successor. It is easy
to confirm that ∼ and 4 are reflexive, ≺ is irreflexive, and F and C4 hold in
S, so I omit those exercises. I confirm the inferiority relationships and present
a partial demonstration of that T8 holds for 4.
S has the same domains and function as in appendix C. Let R represent ≺

and 4. For all m,n ∈ Z+, let

Jnb2Rmb1K = Jnb3Rmb2K =

0 if m ≥ n,

0.5
(

1 + 1
m+1

) √
n−m√
n

if m < n;

Jmb1Rnb2K = 1− Jnb2Rmb1K;
Jmb2Rnb3K = 1− Jnb3Rmb2K;

Jnb3Rmb1K =

0 if m ≥ n,

0.3
(

1 + 1
m+1

) √
n−m√
n

if m < n;

Jmb1Rnb3K = 1− Jnb3Rmb1K;

and for b, b′ ∈ B, define Jmb ≺ nbK, Jmb 4 nbK and Jmb ∼ nb′K as in appendix G.
The following are explanatory comments on the two most important parts of

the structure, namely
(

1 + 1
m+1

)
and

√
n−m√
n

: Without
(

1 + 1
m+1

)
it would be

equally true that 1 b1-object is worse than any number of b3-objects as that 1
billion b1-objects are worse than any number of b3-objects, which one might find
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counterintuitive. The part
(

1 + 1
m+1

)
ensures that as the number m increases,

it becomes truer that m b1-objects are worse than any number of b3-objects,
which seems intuitive. It also ensures that as m approaches infinity, the truth
value of that m b1-objects are worse than any number of b3-objects approaches
a limit (the limit is set by the number 0.3; the limit becomes 1− 0.3). The part√
n−m√
n

makes it so that for any given m, Jmb1 ≺ nb3K decreases and approaches

a limit as n increases. Whether to use
√
n−m√
n

or the simpler n−m
n seems to be

inessential and simply a matter of what looks intuitive. All of this also applies
to comparisons of b1 to b2 and of b2 to b3, except that 0.5 is used instead of 0.3.

It is true to degree 0.7 that b1 is inferior to b3, but there is no object such
that it is true to at least degree 0.7 that it is inferior to an adjacent object in
the sequence:

Jb1 � b3K = lim
m→∞

lim
n→∞

(
1− 0.3

(
1 +

1

m+ 1

) √
n−m√
n

)
= 0.7;

Jb1 � b2K = Jb2 � b3K =

lim
m→∞

lim
n→∞

(
1− 0.5

(
1 +

1

m+ 1

) √
n−m√
n

)
= 0.5;

Jb3 � b1K = Jb3 � b2K = Jb2 � b1K = 0.

To confirm T8 for 4, we need to confirm that for all m,n, k ∈ Z+ and
b, b′, b′′ ∈ B,

Jmb 4 nb′K + Jnb′ 4 kb′′K− 1 ≤ Jmb 4 kb′′K. (H1)

There are many cases such as when b = b′ 6= b′′ and m = k < n. I find that H1
holds in all cases so that T8 of 4 holds in S. But it is a lengthy exercise to go
through all cases so I only confirm the six most difficult cases here:

Case 1 Jmb1 4 nb2K + Jnb2 4 kb3K− 1 ≤ Jmb1 4 kb3K, when m < n < k;

Case 2 Jmb3 4 nb1K + Jnb1 4 kb2K− 1 ≤ Jmb3 4 kb2K, when n < k < m;

Case 3 Jmb2 4 nb3K + Jnb3 4 kb1K− 1 ≤ Jmb2 4 kb1K, when k < m < n;

Case 4 Jmb1 4 nb3K + Jnb3 4 kb2K− 1 ≤ Jmb1 4 kb2K, when m < k < n;

Case 5 Jmb2 4 nb1K + Jnb1 4 kb3K− 1 ≤ Jmb2 4 kb3K, when n < m < k;

Case 6 Jmb3 4 nb2K + Jnb2 4 kb1K− 1 ≤ Jmb3 4 kb1K, when k < n < m.

We can deal with cases 1, 2 and 3 at the same time because they are equiv-
alent. For example, case 1 becomes

0 ≤ 0.5

(
1 +

1

m+ 1

) √
n−m√
n

+ 0.5

(
1 +

1

n+ 1

) √
k − n√
k
− 0.3

(
1 +

1

m+ 1

) √
k −m√
k

, (H2)
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where m < n < k. And case 2 becomes

0 ≤ 0.5

(
1 +

1

k + 1

) √
m− k√
m

− 0.3

(
1 +

1

n+ 1

) √
m− n√
m

+ 0.5

(
1 +

1

n+ 1

) √
k − n√
k

, (H3)

where n < k < m. To notice that the two cases are equivalent, in H2 and its
m < n < k, rename m to n, n to k, and k to m to get H3 and its n < k < m.
The way to get from case 2 to case 3 and from case 3 to case 1 is analogous. So
we can confirm T8 of 4 for cases 1, 2 and 3 by confirming it for case 2, which I
will do by checking that H3 holds for all m,n, k ∈ Z+ such that n < k < m.33

To minimise the right-hand side of H3 for any constant k ≥ 2, m should be
as small as possible and n should be as large as possible; that is, m = k + 1
and n = k − 1. The reason is that when 1 ≤ n < k < m, and n, k and m
are real numbers, the first-order partial derivatives of the right-hand side of H3
with respect to m and n are positive and negative, respectively.

The partial derivative of the right-hand side of H3 with respect to m is

0.25k(k + 2)

m
√
m(k + 1)

√
m− k

− 0.15n(n+ 2)

m
√
m(n+ 1)

√
m− n

. (H4)

To check that H4 is positive when 1 ≤ n < k < m, confirm the following
inequality for such n, k and m:

0.25k(k + 2)

m
√
m(k + 1)

√
m− k

>
0.15n(n+ 2)

m
√
m(n+ 1)

√
m− n

. (H5)

On both sides of H5, multiply by m
√
m, k+ 1 and n+ 1, and divide by 0.15 to

get

5
3k(k + 2)(n+ 1)
√
m− k

>
n(n+ 2)(k + 1)√

m− n
. (H6)

When 1 ≤ n < k < m, the following holds: The denominator on the left-
hand side of H6 is less than the denominator on the right-hand side, and after
expanding the products in the numerators, one can see that the numerator on
the left-hand side is greater than the numerator on the right-hand side. H5 is
confirmed, so the partial derivative of the right-hand side of H3 with respect to
m is positive when 1 ≤ n < k < m.

The partial derivative of the right-hand side of H3 with respect to n is

0.15
(
n2 + n+ 2

)
+ 0.3m

√
m
√
m− n(1 + n)2

−
0.25

(
n2 + n+ 2

)
+ 0.5k

√
k
√
k − n(1 + n)2

. (H7)

33Thanks to Magnus Vinding for explaining how one can check H3 and several of the other
inequalities below.
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To confirm that H7 is less than 0 when 1 ≤ n < k < m, note that for such n, k
and m,

0.15
(
n2 + n+ 2

)
√
m
√
m− n(1 + n)2

<
0.25

(
n2 + n+ 2

)
√
k
√
k − n(1 + n)2

(H8)

because 0.15 < 0.25 and k < m, and then confirm

0.3m√
m
√
m− n(1 + n)2

<
0.5k√

k
√
k − n(1 + n)2

, (H9)

which we can do by simplifying and rearranging H9 to

m√
m
√
m− n

<
5

3

k√
k
√
k − n

;

m (k − n) <

(
5

3

)2

k (m− n) ;

16

9
kn+ kn <

16

9
km+mn.

This holds when 1 ≤ n < k < m because 16
9 kn < 16

9 km and kn < mn. So
the partial derivative of the right-hand side of H3 with respect to n is negative
when 1 ≤ n < k < m.

In H3, replace m by k + 1 and n by k − 1 to get

0 ≤ 0.5

(
1 +

1

k + 1

)
1√
k + 1

− 0.3

(
1 +

1

k

) √
2√

k + 1
+ 0.5

(
1 +

1

k

)
1√
k
, (H10)

where k ≥ 2. H10 holds for all k ≥ 2 because 0.3
√
2√

k+1
< 0.5√

k
for all k ≥ 2. Thus,

H3 holds for all m,n, k ∈ Z+ such that n < k < m. T8 of 4 for cases 1, 2 and
3 is confirmed.

Cases 4, 5 and 6 can be treated all at once for the same reason as cases 1,
2 and 3. I will confirm T8 of 4 for cases 4, 5 and 6 by confirming the following
inequality based on case 5:

0 ≤ 1− 0.5

(
1 +

1

m+ 1

) √
k −m√
k

− 0.5

(
1 +

1

n+ 1

) √
m− n√
m

+ 0.3

(
1 +

1

n+ 1

) √
k − n√
k

, (H11)

where n, k,m ∈ Z+ and n < m < k. The partial derivative of the right-hand
side of H11 with respect to k is negative when n, m and k are real numbers, and
1 ≤ n < m < k. So k should be as large as possible to minimise the right-hand
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side of H11. The limit of the right-hand side of H11 as k goes to infinity is the
right-hand side of

0 ≤ 1− 0.5

(
1 +

1

m+ 1

)
− 0.5

(
1 +

1

n+ 1

) √
m− n√
m

+ 0.3

(
1 +

1

n+ 1

)
. (H12)

H12 holds for all n,m ∈ Z+ such that n < m, as one can see by expanding the
brackets in H12 and simplifying. So T8 of 4 is confirmed for case 5 and thus
also for cases 4 and 6.
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